Химический состав материала, конструкция изделия и напряженное состояние — это только несколько факторов, определяющих способ соединения. Лазерная сварка часто является идеальным решением соединения металлов, для которых требуется высокая скорость обработки, низкое тепловложение, низкие поводки и остаточные напряжения.

Методы лазерной сварки металла

Гибридная сварка сочетает лазерную сварку с другими сварочными технологиями, чаще всего с дуговой сваркой плавящимся электродом в инертном газе (MIG).

Кондуктивная сварка схожа с точечной контактной сваркой, однако позволяет перемещение лазерного луча после появления плавильного «болота». Этот метод может использовать как модулируемые, так и импульсные лазеры для создания герметичного по своей структуре сварного шва. Глубина провара шва обычно составляет менее 2 мм.

Лазерная точечная сварка — это бесконтактная технология, использующая лазер для создания одиночной сварочной точки для связки металлов. Когда лазер сфокусирован, подложка поглощает свет, который расплавляет металл. Расплавленный металл течет, затвердевает и создает маленькую сварочную точку. Весь процесс занимает несколько миллисекунд и может быть повторен в зависимости от толщины материала и требуемой прочности соединения.

svarka lasernaia1msvarka lasernaia2msvarka lasernaia3m

Сварка с глубоким проплавлением требует высочайшей плотности энергии для создания лазерного сварного шва. Сфокусированный лазерный луч расплавляет и выпаривает подложку. Давление пара смещает расплавленный металл и создает глубокое и узкое сквозное проплавление. По мере перемещения лазерного луча расплавленный металл обтекает сквозное проплавление и затвердевает, образовывая на своем пути глубокий узкий шов.

Типы металлов:

  • Нержавеющие стали
  • Углеродистые стали
  • Золото и серебро
  • Алюминий
  • Инструментальные стали
  • Никелевые сплавы
  • Латунь и медь
  • Титан

Сварка толстого металла

Волоконные лазеры сейчас широко используются в сварке разнообразных тонких материалов. Длина волны 1070 нм в ближнем инфракрасном диапазоне спектра имеет определенные преимущества над существующей технологией на базе углекислотных лазеров из-за более низкой отражательной способности металлов на этой длине волны. Это особенно актуально для металлов с высокой отражательной способностью, например алюминия и меди, где высокомощные волоконные лазеры используются для сварки до 15 мм — ранее такую толщину невозможно было достичь при использовании других типов лазеров. Для использования волоконных лазеров с высокой средней мощностью и относительно небольшими размерами пятна для сварки толстых металлов требуется использовать способ, известный как сварка с проплавлением в узкую разделку. Узкая разделка обеспечивает глубокое проплавление и качественный шов на высокой скорости. Это означает меньшую чувствительность к положению фокуса, которая значительно повышает легкость, с которой высокое качество сварных швов может быть достигнуто. Другие примеры волоконной лазерной сварки толстых металлов включают глубокопроникающую сварку толстой стали для судов и трубопроводов.

lasernaia svarka4mlasernaia svarka5mlasernaia svarka4mlasernaia svarka5mlasernaia svarka4mlasernaia svarka5mlasernaia svarka4mlasernaia svarka5mlasernaia svarka4mlasernaia svarka5mlasernaia svarka4mlasernaia svarka5mlasernaia svarka4m

Сварка тонкого металла

Лазерная сварка зачастую является идеальным решением соединения металлов, для которых требуется высокая скорость обработки, низкое тепловложение, зона измененной структуры металла и минимальные поводки. За счет хорошего качества пучка волоконных лазеров киловаттного класса в диапазоне от средней до высокой мощности представлен широкий спектр механизмов для лазерной сварки от узким разделки с высоким соотношением ее сторон до сварки малых толщин. Эрбиевые непрерывные волоконные лазеры с низкой и средней мощностью (до 1 кВт) используются для сварки разнообразных тонких листовых материалов толщиной до 1,5 мм на высокой скорости.

Эрбиевые непрерывные волоконные лазеры с низкой и средней мощностью возможно фокусировать в маленькие пятна с помощью гальваносканеров и технологических линз с большим фокусным расстоянием, что обеспечивает удаленную лазерную сварку. Существует много преимуществ использования технологических линз с большим фокусным расстоянием и большой степенью центрирования, поскольку это значительно увеличивает рабочую зону. Например, отдельные сварочные станции, оборудованные волоконными лазерами, могут полностью сваривать дверную панель. При использовании роботов швы внахлест могут выполняться на всем корпусе автомобиля. Другие области применения: герметичная сварка аккумуляторных батарей и герметичных уплотнений.

Волоконные лазеры квазинепрерывного излучения с модуляцией добротности обеспечивают возможность импульсной лазерной сварки с высокой пиковой и низкой средней мощностью для работы в условиях низкого подвода тепла. Доставка импульса через волокно обеспечивает легкую интеграцию в обычные прямые оптические сварочные или гальванометрические головки. Для типичной точечной сварки могут использоваться любые из вышеназванных прямых оптических головок для сварки медицинского оборудования, например кардиостимуляторов. Способ доставки излучения на основе гальванометра можно использовать для высокоскоростной точечной сварки корпусов мобильных телефонов и планшетов, бритвенных лезвий или подкапотных автомобильных компонентов.